3.7.30 \(\int \frac {(c x)^{5/2}}{(a+b x^2)^{5/2}} \, dx\) [630]

Optimal. Leaf size=304 \[ -\frac {c (c x)^{3/2}}{3 b \left (a+b x^2\right )^{3/2}}+\frac {c (c x)^{3/2}}{2 a b \sqrt {a+b x^2}}-\frac {c^2 \sqrt {c x} \sqrt {a+b x^2}}{2 a b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{2 a^{3/4} b^{7/4} \sqrt {a+b x^2}}-\frac {c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{4 a^{3/4} b^{7/4} \sqrt {a+b x^2}} \]

[Out]

-1/3*c*(c*x)^(3/2)/b/(b*x^2+a)^(3/2)+1/2*c*(c*x)^(3/2)/a/b/(b*x^2+a)^(1/2)-1/2*c^2*(c*x)^(1/2)*(b*x^2+a)^(1/2)
/a/b^(3/2)/(a^(1/2)+x*b^(1/2))+1/2*c^(5/2)*(cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2)))^2)^(1/2)/cos(2*
arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2)))*EllipticE(sin(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2))),1/2*
2^(1/2))*(a^(1/2)+x*b^(1/2))*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/a^(3/4)/b^(7/4)/(b*x^2+a)^(1/2)-1/4*c^(5/
2)*(cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/
2)))*EllipticF(sin(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*((b*x^2+a)/
(a^(1/2)+x*b^(1/2))^2)^(1/2)/a^(3/4)/b^(7/4)/(b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 304, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {294, 296, 335, 311, 226, 1210} \begin {gather*} -\frac {c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{4 a^{3/4} b^{7/4} \sqrt {a+b x^2}}+\frac {c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{2 a^{3/4} b^{7/4} \sqrt {a+b x^2}}-\frac {c^2 \sqrt {c x} \sqrt {a+b x^2}}{2 a b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {c (c x)^{3/2}}{2 a b \sqrt {a+b x^2}}-\frac {c (c x)^{3/2}}{3 b \left (a+b x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*x)^(5/2)/(a + b*x^2)^(5/2),x]

[Out]

-1/3*(c*(c*x)^(3/2))/(b*(a + b*x^2)^(3/2)) + (c*(c*x)^(3/2))/(2*a*b*Sqrt[a + b*x^2]) - (c^2*Sqrt[c*x]*Sqrt[a +
 b*x^2])/(2*a*b^(3/2)*(Sqrt[a] + Sqrt[b]*x)) + (c^(5/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt
[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(2*a^(3/4)*b^(7/4)*Sqrt[a + b*x^2])
 - (c^(5/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c
*x])/(a^(1/4)*Sqrt[c])], 1/2])/(4*a^(3/4)*b^(7/4)*Sqrt[a + b*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {(c x)^{5/2}}{\left (a+b x^2\right )^{5/2}} \, dx &=-\frac {c (c x)^{3/2}}{3 b \left (a+b x^2\right )^{3/2}}+\frac {c^2 \int \frac {\sqrt {c x}}{\left (a+b x^2\right )^{3/2}} \, dx}{2 b}\\ &=-\frac {c (c x)^{3/2}}{3 b \left (a+b x^2\right )^{3/2}}+\frac {c (c x)^{3/2}}{2 a b \sqrt {a+b x^2}}-\frac {c^2 \int \frac {\sqrt {c x}}{\sqrt {a+b x^2}} \, dx}{4 a b}\\ &=-\frac {c (c x)^{3/2}}{3 b \left (a+b x^2\right )^{3/2}}+\frac {c (c x)^{3/2}}{2 a b \sqrt {a+b x^2}}-\frac {c \text {Subst}\left (\int \frac {x^2}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{2 a b}\\ &=-\frac {c (c x)^{3/2}}{3 b \left (a+b x^2\right )^{3/2}}+\frac {c (c x)^{3/2}}{2 a b \sqrt {a+b x^2}}-\frac {c^2 \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{2 \sqrt {a} b^{3/2}}+\frac {c^2 \text {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a} c}}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{2 \sqrt {a} b^{3/2}}\\ &=-\frac {c (c x)^{3/2}}{3 b \left (a+b x^2\right )^{3/2}}+\frac {c (c x)^{3/2}}{2 a b \sqrt {a+b x^2}}-\frac {c^2 \sqrt {c x} \sqrt {a+b x^2}}{2 a b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{2 a^{3/4} b^{7/4} \sqrt {a+b x^2}}-\frac {c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{4 a^{3/4} b^{7/4} \sqrt {a+b x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.04, size = 74, normalized size = 0.24 \begin {gather*} \frac {2 c (c x)^{3/2} \left (-a+\left (a+b x^2\right ) \sqrt {1+\frac {b x^2}{a}} \, _2F_1\left (\frac {3}{4},\frac {5}{2};\frac {7}{4};-\frac {b x^2}{a}\right )\right )}{3 a b \left (a+b x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*x)^(5/2)/(a + b*x^2)^(5/2),x]

[Out]

(2*c*(c*x)^(3/2)*(-a + (a + b*x^2)*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[3/4, 5/2, 7/4, -((b*x^2)/a)]))/(3*a*b
*(a + b*x^2)^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 385, normalized size = 1.27

method result size
elliptic \(\frac {\sqrt {c x}\, \sqrt {c x \left (b \,x^{2}+a \right )}\, \left (-\frac {c^{2} x \sqrt {b c \,x^{3}+a c x}}{3 b^{3} \left (x^{2}+\frac {a}{b}\right )^{2}}+\frac {c^{3} x^{2}}{2 b a \sqrt {\left (x^{2}+\frac {a}{b}\right ) b c x}}-\frac {c^{3} \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{4 b^{2} a \sqrt {b c \,x^{3}+a c x}}\right )}{c x \sqrt {b \,x^{2}+a}}\) \(263\)
default \(-\frac {\left (6 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticE \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b \,x^{2}-3 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b \,x^{2}+6 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticE \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{2}-3 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{2}-6 b^{2} x^{4}-2 a b \,x^{2}\right ) c^{2} \sqrt {c x}}{12 x \,b^{2} a \left (b \,x^{2}+a \right )^{\frac {3}{2}}}\) \(385\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(5/2)/(b*x^2+a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/12*(6*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)
^(1/2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b*x^2-3*((b*x+(-a*b)^(1/2))/(-a
*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-
a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b*x^2+6*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+
(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),
1/2*2^(1/2))*a^2-3*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-
x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a^2-6*b^2*x^4-2*a*b*x^2
)*c^2/x*(c*x)^(1/2)/b^2/a/(b*x^2+a)^(3/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)/(b*x^2+a)^(5/2),x, algorithm="maxima")

[Out]

integrate((c*x)^(5/2)/(b*x^2 + a)^(5/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.31, size = 118, normalized size = 0.39 \begin {gather*} \frac {3 \, {\left (b^{2} c^{2} x^{4} + 2 \, a b c^{2} x^{2} + a^{2} c^{2}\right )} \sqrt {b c} {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right ) + {\left (3 \, b^{2} c^{2} x^{3} + a b c^{2} x\right )} \sqrt {b x^{2} + a} \sqrt {c x}}{6 \, {\left (a b^{4} x^{4} + 2 \, a^{2} b^{3} x^{2} + a^{3} b^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)/(b*x^2+a)^(5/2),x, algorithm="fricas")

[Out]

1/6*(3*(b^2*c^2*x^4 + 2*a*b*c^2*x^2 + a^2*c^2)*sqrt(b*c)*weierstrassZeta(-4*a/b, 0, weierstrassPInverse(-4*a/b
, 0, x)) + (3*b^2*c^2*x^3 + a*b*c^2*x)*sqrt(b*x^2 + a)*sqrt(c*x))/(a*b^4*x^4 + 2*a^2*b^3*x^2 + a^3*b^2)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 4.06, size = 44, normalized size = 0.14 \begin {gather*} \frac {c^{\frac {5}{2}} x^{\frac {7}{2}} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {7}{4}, \frac {5}{2} \\ \frac {11}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac {5}{2}} \Gamma \left (\frac {11}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(5/2)/(b*x**2+a)**(5/2),x)

[Out]

c**(5/2)*x**(7/2)*gamma(7/4)*hyper((7/4, 5/2), (11/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(5/2)*gamma(11/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)/(b*x^2+a)^(5/2),x, algorithm="giac")

[Out]

integrate((c*x)^(5/2)/(b*x^2 + a)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,x\right )}^{5/2}}{{\left (b\,x^2+a\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(5/2)/(a + b*x^2)^(5/2),x)

[Out]

int((c*x)^(5/2)/(a + b*x^2)^(5/2), x)

________________________________________________________________________________________